728x90
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
사용할 라이브러리들을 임포트 해주고,
데이터 프레임을 읽어옵니다.
X = df.iloc[:,[2,3]]
y=df['Purchased']
X와 y 분리
from sklearn.preprocessing import MinMaxScaler
scaler_X = MinMaxScaler()
X=scaler_X.fit_transform(X)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y, test_size=0.25,random_state=1)
from sklearn.svm import SVC
classifier = SVC( kernel='linear', random_state=1 )
classifier.fit(X_train,y_train)
y_pred=classifier.predict(X_test)
from sklearn.metrics import confusion_matrix,accuracy_score
cm = confusion_matrix(y_test,y_pred)
accuracy_score(y_test,y_pred)
from matplotlib.colors import ListedColormap
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('K-NN (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
from matplotlib.colors import ListedColormap
X_set, y_set = X_train, y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier2.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('K-NN (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
'인공지능 > 머신러닝' 카테고리의 다른 글
머신러닝 : Decision Tree (0) | 2022.12.02 |
---|---|
머신러닝 : BREAST CANCER CLASSIFICATION 예제풀이 (0) | 2022.12.02 |
머신 러닝 : KNN알고리즘 (K-Nearest Neighbor) (0) | 2022.12.02 |
머신 러닝 : Logistic Regression up sampling기법 imblearn.over_sampling SMOTE (0) | 2022.12.02 |
머신 러닝 : Logistic Regression , Confusion Matrix (0) | 2022.12.02 |