왕현성
코딩발자취
왕현성
전체 방문자
오늘
어제
  • 코딩 (277)
    • Python (71)
    • Java (16)
    • MySQL (34)
    • 인공지능 (48)
      • 머신러닝 (16)
      • 딥러닝 (32)
    • 영상처리 (4)
    • Rest API (21)
    • Android Studio (25)
    • streamlit (13)
    • DevOps (22)
      • AWS (9)
      • PuTTY (5)
      • Git (4)
      • Serverless (2)
      • Docker (2)
    • IT 기술 용어 (6)
    • 디버깅 ( 오류 해결 과정 ) (17)

블로그 메뉴

  • 홈
  • 태그
  • 방명록

공지사항

인기 글

태그

  • 영상처리
  • alibidetect
  • labelme
  • encoding='utf-8'
  • pytorch
  • 컴퓨터비전
  • get_long_description
  • unsupervised
  • UnboundLocalError
  • alibi-detection
  • 영상처리역사
  • OpenCV
  • 영상기술
  • ckpt_file
  • ComputerVision
  • maskimage
  • imageprocessing
  • PYTHON
  • labelme UnocodeDecodeError
  • tune()
  • 기상탐사
  • PIL
  • 비지도학습
  • 딥러닝
  • matplotlib
  • TensorFlow
  • numpy
  • pip install labelme
  • yolov8
  • 의료이미징

최근 댓글

최근 글

티스토리

250x250
hELLO · Designed By 정상우.
왕현성

코딩발자취

머신러닝 : Support Vector Machine SVM
인공지능/머신러닝

머신러닝 : Support Vector Machine SVM

2022. 12. 2. 15:38
728x90

 

 

# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

사용할 라이브러리들을 임포트 해주고,

데이터 프레임을 읽어옵니다.

X = df.iloc[:,[2,3]]
y=df['Purchased']

X와 y 분리

from sklearn.preprocessing import MinMaxScaler
scaler_X = MinMaxScaler()
X=scaler_X.fit_transform(X)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y, test_size=0.25,random_state=1)
from sklearn.svm import SVC
classifier = SVC( kernel='linear', random_state=1 )
classifier.fit(X_train,y_train)
y_pred=classifier.predict(X_test)

from sklearn.metrics import confusion_matrix,accuracy_score
cm = confusion_matrix(y_test,y_pred)
accuracy_score(y_test,y_pred)

from matplotlib.colors import ListedColormap
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                     np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
             alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('K-NN (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()

 

from matplotlib.colors import ListedColormap
X_set, y_set = X_train, y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                     np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier2.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
             alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('K-NN (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()

'인공지능 > 머신러닝' 카테고리의 다른 글

머신러닝 : Decision Tree  (0) 2022.12.02
머신러닝 : BREAST CANCER CLASSIFICATION 예제풀이  (0) 2022.12.02
머신 러닝 : KNN알고리즘 (K-Nearest Neighbor)  (0) 2022.12.02
머신 러닝 : Logistic Regression up sampling기법 imblearn.over_sampling SMOTE  (0) 2022.12.02
머신 러닝 : Logistic Regression , Confusion Matrix  (0) 2022.12.02
    '인공지능/머신러닝' 카테고리의 다른 글
    • 머신러닝 : Decision Tree
    • 머신러닝 : BREAST CANCER CLASSIFICATION 예제풀이
    • 머신 러닝 : KNN알고리즘 (K-Nearest Neighbor)
    • 머신 러닝 : Logistic Regression up sampling기법 imblearn.over_sampling SMOTE
    왕현성
    왕현성
    AI 머신비전 학습일지

    티스토리툴바